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Using thermal energy storage in chilled water systems can reduce electricity bill charges and required
chiller cooling capacity through load shifting and peak demand shavings. As opposed to simple heuristic
strategies, optimal storage dispatch maximizes savings by considering the time of use tariffs and system
efficiency. In this paper, we propose a solution to the optimal equipment scheduling and storage dispatch
problem of multi-chiller chilled water systems with ice thermal storage. We model the system in a bi-
level optimization formulation that is solved using the genetic algorithm. The upper level minimizes daily
operation costs and decides the storage dispatch amount over the next 24 h. The decided upon dispatch
amount is fed to the lower-level optimizer to solve the equipment scheduling problem sequentially and
return the corresponding system power consumption over the next 24 h. Flowrate and energy balancing
constraints are handled using the penalty function method. Tuning of the penalty factors and genetic
algorithm parameters significantly diminished and eliminated the problem of premature convergence.
While the genetic algorithm is computationally taxing, we reduced the run time to 1–2 min by pre-
solving the lower-level problem under various input conditions and tri-linearly interpolating between
them. We compared the developed optimal control strategy to two commonly used heuristic storage dis-
patch strategies: chiller priority control and storage priority control in three scenarios of cooling demand
under a time of use electricity pricing. Our model suggests optimal control reduces cost and energy by
11–14% and 10–12%, respectively, relative to storage priority control, and 16–33% and 1–9%, respectively,
relative to chiller priority control. In a scenario with a demand charge, optimized control reduces demand
charges by 17% relative to storage priority and 26% relative to chiller priority control. The gains from the
proposed approach are augmented when a more sophisticated tariff structure is present.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

The development of air conditioning allowed for maintaining
indoor comfort irrespective of outdoor ambient conditions. It is
primarily accomplished using energy-intensive technologies pow-
ered by electrical grids dominated by carbon-based energy sources.
The soaring demand for air conditioning necessitates a more sus-
tainable approach to cooling to mitigate further warming of the
earth’s atmosphere due to increased emissions of greenhouse
gases. This includes using renewable energy sources with energy
storage combined with passive cooling design, energy efficiency,
and optimal resource management. In regions with a time of use
(TOU) electricity pricing or demand charges, thermal energy stor-
age can be used to reduce building peak electricity demand and
the required chiller cooling capacity and in load shifting. In that
mode of operation, the thermal storage is charged during the off-
peak period, typically at night, and discharged during the on-
peak period, typically in the afternoon, making it suitable for use
in schools, offices, and other buildings with dominant daytime
cooling needs. In this paper, we propose a solution to the optimal
scheduling and dispatch problem of multi-chiller chilled water sys-
tems with ice thermal storage under TOU rates.

The literature is rich with attempts to solve the chilled water
system’s scheduling problems [1–10]. The bulk of literature
neglects the roles of auxiliary components and only considers the
problem of sequencing of chillers. For these problems, they tend
to assume a fixed water supply and condenser temperatures. This
simplifies the chiller model to a cubic or often a quadratic function
of their loading. Various optimization strategies are used to solve
these problems, ranging from simple linear to quadratic program-
ming and meta-heuristic optimization strategies like genetic algo-
rithm and particle swarm optimization. The most detailed model
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Nomenclature

Parameters
Symbol Meaning
_m Flowrate, kg/s
T Temperature, �C
COP Coefficient of Performance, dimensionless
_Q Heat transfer rate, kW
R Chillers heat exchanger effective thermal resistance,

K/kW
DS Entropy generation rate, kW/K
_H Rate of change of enthalpy, kW
P Power, kW
k Pumps/fans constant, kW
ce Time of use electricity rates, $/kWh
cp Specific heat, kJ/kg��C
Cis Ice storage thermal capacity, kJ
q Density, kg/m3
h Specific enthalpy, kJ/kg
g Efficiency, dimensionless
x Evaporator refrigerant quality, dimensionless
PLR Part-load ratio, dimensionless
SoC State of charge, dimensionless
VSD Angular speed, % of maximum speed
A Area, m2

Nrow Number of coils rows
V Fluid face velocity, m/s

Superscripts
max Maximum
refg Refrigerant
des Design conditions
chl Chiller
pp Primary pump
cp Condenser pump
sp Secondary pump
cf Coil fan
twr Cooling Tower
cc Cooling coils
Sys System
sw Chiller evaporator leaving water
bsw Blended chillers evaporator leaving water
brw Blended chillers evaporator returning water
cw Chiller condenser water
bcw Blended chillers condenser water
bcsw Blended chillers condenser entering water
bcrw Blended chillers condenser leaving water
ccsw Cooling coil supply water
ccrw Cooling coil return water
isw Ice storage supply water

cca Cooling coil air
twra Cooling tower air
VSD Variable speed drive
m Motor
a Air
w Water
ice Ice
is Ice storage
ai Coil inlet air
ae Coil exit air
s Sensible
l Latent
D Demand
dp Coil air dew-point
dry Dry section of the coil
wet Wet section of the coil
int Internal
ext External
sat Saturated with water
wb Ambient air wet-bulb
is Ice storage
fg Latent heat of evaporation
sf Latent heat of fusion

Index Sets
t Time step index set denoted by T

i Chiller index set denoted by I

n Cooling tower index set denoted by N

s Secondary pump index set denoted by S

z Training data index set denoted by Z

Decision Variables
Tsw
t;i Leaving chilled water temperature for chiller i at time

step t, �C
Tbcsw
t Entering condenser water temperature for chillers at

time step t, �C
_misw
t Storage water flowrate at time step t, kg/s

VSDcf
t Cooling coil fan motor speed at time step t, % of maxi-

mum speed
VSDsp

t Secondary pump motor speed at time step t, % of max-
imum speed

VSDtwr
t Cooling tower fan motor speed at time step t, % of max-

imum speed
ONchl

t;i Chiller power switch for chiller i at time step t, binary
ONtwr

t;n Fan power switch for cooling tower n at time step t, bin-
ary
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found in the literature was developed by Zhang et al. [11]. The for-
mulation captures the complex behavior of chillers and cooling
towers using regression-based models and takes supply and con-
denser water temperatures as decision variables. The considered
solution approach is near-optimal using sequential quadratic pro-
gramming. In another work, Zhang et al. [12] consider the effect of
minimum up/down time constraints on the optimization. Their
work suggests that minimum up/down time significantly increases
the complexity of the problem with little return in cost minimiza-
tion, and it is best handled heuristically post-computation. Traut-
man et al. [13] formulated a detailed chilled water system model
optimizing the condenser water pump and tower fan speed. Their
model results suggest optimal tower fan speed can achieve
2

12–15 % energy savings, while condenser pump control had
negligible energy savings.

Much attention has also been given to the scheduling problem
with thermal energy storage [14–23]. A more sophisticated model
and optimization strategy are often used in these problems. Lee
et al. [15] used meta-heuristic particle swarm optimization to min-
imize ice storage life cycle cost for a single water-cooled chiller
system. Chen et al. [17] utilized the dynamic programming method
to optimize a chilled water system with ice storage. Zhu et al. [20]
proposed a bi-level optimization strategy to optimize the capacity
and operation of a multi-chiller chilled water system with electric
and thermal energy storage. The optimization strategy employs a
meta-heuristic genetic algorithm for the upper level and mixed-
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integer linear programming for the lower level with piece-wise lin-
earization. The study suggests that energy storage can significantly
reduce cost and increase renewable penetration in the grid because
of load shifting. Kamal et al. [23] used an evolutionary algorithm to
optimize a multi-chiller chilled water system with ice and chilled
water storage for load shifting and cost reduction. Storage was
found to reduce cost and equipment size.

A prevalent solution strategy in the literature is the genetic
algorithm, which is a type ofmeta-heuristic evolutionary optimiza-
tion strategy inspired by the theory of evolution. The algorithm can
work with non-convex and non-continuous problems [24–26], typ-
ically confronted with equipment scheduling problems. They
explore the solution space by using a population of potential solu-
tions. The algorithm selects the fittest individuals to produce the
next generation of solutions. Over multiple iterations, the algo-
rithm evolves toward a globally optimal solution.

In this paper, we consider physics-based steady-state models
for the ice thermal storage and each of the key power-consuming
components, including the chillers, cooling towers, water pumps,
and cooling coil fans. We formulate the modeled system into a
bi-level optimization problem solved using genetic algorithm at
both levels. The upper level minimizes daily operation costs and
decides the storage dispatch amount over the next 24 h. The
decided upon dispatch amount is fed to the lower-level optimizer
to solve the equipment scheduling problem sequentially and
return the corresponding system power consumption at each hour.
Balancing constraints derived from the conservation of mass and
energy in the lower-level problem are handled using the penalty
function method. Tuning of the penalty factors and genetic algo-
rithm parameters significantly diminished and eliminated the
problem of premature convergence. While computationally taxing,
the run time for the proposed approach can be reduced to 1–2 min
by pre-solving the lower-level problem under a range of input con-
ditions and tri-linearly interpolating between them. The lower-
level scheduling problem is influenced by the cooling demand,
the ambient condition, and storage use. The proposed decomposi-
tion and tuning solution strategy provides a reasonably scalable
and robust approach that can be used on highly non-linear space
cooling and heating problems, thereby negating the need for sim-
plistic models.

In this study, we consider the scheduling problem of a chilled
water system with multi-chillers and ice thermal storage in a
primary-secondary configuration shown in Fig. 1. Primary-
secondary flow configuration is a standard chilled water system
configuration used on small to large buildings [27–29]. In this con-
figuration, the secondary (distribution) loop is decoupled from the
primary (production) loop. The chillers operate with their respec-
tive fixed-speed pumps to maintain design flow. Variable speed
pumps modulate the water supply to the coil to meet the building
cooling load. Surplus water flows back to the chillers through the
bypass and blends with the coil’s return water. The considered sys-
tem is comprised of 3 chillers, two 212-tons Carrier 19XR chillers
with VSD, and one 153-tons Trane RTHB chiller, with a cumulative
chiller cooling capacity of 570 tons, two 360 tons cooling towers,
1600 ton-hr internal melt ice storage for a design building cooling
demand of 730 tons.

In section 2, we present the methodology. First, we outline the
employed model for each key component and then lay out the
overall problem formulation and the developed optimization strat-
egy. In section 3, we solve the problem for three scenarios of cool-
ing demand under TOU electricity pricing. The proposed approach
is compared to two commonly used heuristic strategies for storage
use: chiller priority control and storage priority control. Lastly, the
study is summarized in section 4.
3

2. Methodology

2.1. Components modeling

2.1.1. Chillers
Chillers are the dominant power-consuming component in

chilled water systems. The performance of chillers is a function
of their loading and supply and condenser temperatures. We con-
sider a widely used simple model first developed by Gordon-Ng
[31] to predict electric chillers’ coefficient of performance (COP)
using the first and second laws of thermodynamics. A modification
to the model was proposed by Jian and Reddy [32] to include a
term representing entropy generation rate due to irreversibility

that is dependent on loading (DSintQi
_Qchl
t;i =

_Qdes
i ) in addition to a con-

stant entropy generation rate term (DSinti ) which slightly improves
its prediction capabilities. The modified Gordon-Ng model is as
follows:

Tsw
t;i

Tbcsw
t

1þ 1
COPt;i

� �
¼ 1þ

Tsw
t;i DSinti þ DSintQi

_Q
chl
t;i

_Q
des
i

� �
_Q
chl

t;i

þ
_Q
leak;eqv
i Tbcsw

t � Tsw
t;i

� �
Tbcsw
t

_Q
chl

t;i

þ Ri
_Q
chl

t;i

Tbcsw
t

1þ 1
COPt;i

� �
ð1Þ

and the chiller loading is given by:

_Q
chl

t;i ¼ _msw
i cp;sw Tbrw

t � Tsw
t;i

� �
ð2Þ

i is the chiller index set f1; 2; 3g denoted by I, and t is the

time-step index set {1; 2; 3; � � � ; 24} denoted by T. Tsw
t;i and Tbrw

t

are the chiller evaporator leaving and returning water-glycol mix-

ture temperatures, respectively, Tbcsw
t is the condenser entering

temperature, _msw
i is the chiller evaporator water flowrate, cp;sw is

the water-glycol mixture specific heat, and _Q
des

i is the chiller cool-
ing capacity at design conditions. The parameters in Gordon’s

model: _Q
leak;eqv
i is the heat leak into the evaporator from the ambi-

ent and out of the condenser into the ambient, the latter being less
significant; Ri is the equivalent thermal resistance for the evapora-
tor and condenser heat exchangers and dominates the chiller per-

formance at high chiller loading; DSinti is internal entropy
generation rate and dominates performance at low loading condi-

tions. DSinti ; DSintQi ; Ri and _Q
leak;eqv
i are obtained using least square

linear regression from known chiller performance data. Chiller
power consumption can then be calculated from the predicted
COP:

Pchl
t;i ¼

_Q
chl

t;i

COPt;i
ONchl

t;i ð3Þ

ONchl
t;i are binary decision variables for the chillers power switch.

We use the public library of chiller data in EnergyPlus given in a
regression-based model with three polynomial curves using the
DOE-2 model [33,34]. The first curve (called CAPFT in EnergyPlus)
describes the influence of entering evaporator and condenser tem-
peratures on the cooling capacity. The second curve (called EIRFT in
EnergyPlus) describes the influence of entering evaporator and
condenser temperatures on electric power consumption. The third
curve (called EIRFPLR in EnergyPlus) describes the influence of the



Fig. 1. Considered chilled water system in a primary-secondary configuration with three water-cooled chillers (two 212-tons Carrier 19XR chillers with VSD and one 153-
tons Trane RTHB chiller), two shared cooling towers (360 tons each), and ice thermal storage (1600 ton-hr). The building is represented in a single coil with the respective
aggregate cooling load.
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chiller loading on electric power consumption. However, the given
three polynomial curves are only valid within narrow ranges of
temperatures. They cannot predict chiller performance at low
evaporator temperatures associated with ice storage charging or
high condenser temperatures associated with hot and humid cli-
mates. We uniformly sample the COP described by the three poly-
nomial curves within the given range of condenser and supply
temperatures and loading conditions. Least-square linear regres-
sion is applied between the model’s predicted COP and sampled

COP from EnergyPlus to determine DSint ; DSintQ ; R and Qleak;eqv .
The considered system is comprised of three low-flow chillers with
a design DT of 10 �C in the evaporator and condenser; two 212-
tons centrifugal chillers with VSD (Carrier 19XR), and one 153-
tons screw chiller (Trane RTHB). The characteristics of the selected
chillers can be found in Tables 2 and 3 in the Appendix. The COP
predicted by the modified Gordon-Ng model compared to the sam-
pled COP from EnergyPlus is shown in Fig. 2 (A) for Trane RTHB
chiller. The modified Gordon-Ng model often underpredicts the
COP by no more than 10 %.
Fig. 2. Trane RTHB screw chiller: (A) Predicted COP using the modified Gordon-Ng mo
supply and condenser temperatures and chiller loading, and (B) Estimated cooling capa

4

Not only the performance of a chiller varies with operating con-
ditions but too its available cooling capacity. A reduction in supply
temperature or an increase in condenser temperature depresses
the cooling capacity. On the contrary, re-setting the supply tem-
perature or reducing the condensing temperature enhances the
evaporator capacity. However, the utility from the increase in
evaporator heat transfer capacity is ultimately constrained by the
compressor’s ability to support the required flow and pressure
head. Centrifugal compressors are constant pressure variable flow
machines and do not experience significant gain or loss in capacity
when the pressure differential is varied. On the other hand, posi-
tive displacement compressors are constant flow variable pressure
machines and experience dramatic gain or loss in capacity when
the pressure differential is varied [35,36]. The refrigerant satura-
tion density, which affects the mass flowrate, becomes the domi-
nant factor in depressing the chiller cooling capacity in ice-
making mode. Chillers can experience as much as 30–40 % loss in
capacity when operating in ice-making mode. A simple yet power-
ful approach is to predict the chiller cooling capacity from the
del versus COP from EnergyPlus uniformly sampled over the entire given range of
city ratio from refrigerant thermal capacity versus from EnergyPlus.
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refrigerant thermal capacity under the specified conditions. The
cooling capacity ratio is defined as the ratio of available to design
cooling capacity:

_Q
max

t;i

_Q
des

i

¼ hrefg;fg
t;i

hrefg;fg;des
i

1� xrefgt;i

1� xrefg;desi

qrefg
t;i

qrefg;des
i

ð4Þ

hrefg;fg
t;i is the refrigerant enthalpy of vaporization, qrefg

t;i is satu-

rated vapor density, and xrefgt;i is the quality of the refrigerant vapor
mixture in the evaporator. Parameters in the denominator of Equa-
tion (4) are evaluated at reference or design refrigerant tempera-
tures. The refrigerant and water temperatures are related by the
approach temperature, which is the difference between leaving
water and refrigerant temperatures in the evaporator and con-
denser. It is on the order of 0.5–2 �C for modern chillers [37,38].
While the approach temperatures depend on the load, the varia-
tions are too small to impact the chiller cooling capacity. The esti-
mated cooling capacity ratio must not exceed the chiller’s
compressor capacity ratio, which yields the following expression
for the cooling capacity ratio:

_Q
max

t;i

_Q
des

i

¼ min
_Q
chl;max

i

_Q
des

i

;
hrefg;fg
t;i

hrefg;fg;des
i

1� xrefgt;i

1� xrefg;desi

qrefg
t;i

qrefg;des
i

2
4

3
5 ð5Þ

_Q
chl;max

i is the maximum chiller cooling rate the compressor
allows at a given supply and condenser water temperatures
obtained from CAPFT from EnergyPlus. A comparison of predicted
cooling capacity ratios and capacity ratios from EnergyPlus is in
Fig. 2 for Trane RTHB screw chiller (B). A slight difference of no
more than 3 % is observed between the estimated and known cool-
ing capacity ratios.

2.1.2. Pumps and fans
Chiller pumps (primary and condenser) are fixed-speed pumps

controlled to maintain the design evaporator and condenser water
flowrates and only operate with their associated chiller. Secondary
pumps are speed controlled to deliver the required flowrate to sat-
isfy the building cooling load. Excess water returns to the chiller
flow through the decoupler. The power required by fixed-speed
pumps is constant.

Ppp
t;i ¼ kppi ONchl

t;i ð6Þ

Pcp
t;i ¼ kcpi ONchl

t;i ð7Þ
Superscript pp and cp refer to primary and condenser pumps,

respectively, and k is the pump constant. For variable-speed pumps
and fans, the power is a function of the rotational speed per the
affinity laws as shown in (8)-(10), and the motor and variable
speed drive (VSD) efficiency:

Psp
t ¼

X
s2Sk

sp
s

VSDsp
t

� 	3
gm;sp
t gVSD;sp

t

ð8Þ

Pcf
t ¼ kcf

VSDcf
t

� �3
gm;cf
t gVSD;cf

t

ð9Þ

Ptwr
t;n ¼ ktwr

n

VSDtwr
t

� 	3
gm;twr
t gVSD;twr

t

ONtwr
t;n ð10Þ

Superscript sp refers to secondary pumps, cf refers to the coil
fan, and twr refers to the cooling towers. ONtwr

t;n are binary decision
variables for the cooling tower power switch, and VSD is the non-
5

dimensional rotational speed defined as the actual angular speed
normalized by the maximum angular speed. The subscript n is
the cooling towers index set {1;2} denoted byN, and the subscript
s is the secondary pumps index set {1;2} denoted by S. Individual
variable speed cooling tower fans and secondary pumps are iden-
tical and controlled at the same speed. For systems with a more
sophisticated secondary pumping configuration, their optimal
scheduling and speed configuration can be determined beforehand
and represented as a function of flowrate. The optimal scheduling
and speed configuration does not depend on chillers’ settings
upstream. Assumed pumps and fan constant values can be found
in Table 4 in the Appendix. The motor and variable speed drive effi-
ciencies as a function of their speed are obtained from correlations
by Bernier and Bernard [39]:

gmðVSDÞ ¼ 0:94187 1� exp �9:04VSDð Þ½ � ð11Þ

gVSDðVSDÞ ¼ 1
100

50:87þ 128:3VSD� 142VSD2 þ 58:34VSD3
h i

ð12Þ
2.1.3. Cooling towers
Cooling towers reject the heat from the condenser into the

atmosphere primarily by evaporative cooling. A simple and
widely used NTU-effectiveness model developed by Braun et al.
[40] allows for predicting the heat rejected by the tower given
air and water mass flowrates and temperatures. Although it is
responsible for most of the cooling, mass transfer accounts for
less than 2 % of the total water flowrate and is not factored for
in the model. The fan is the sole power-consuming device. Oper-
ating cooling towers are controlled at the same speed to maintain
the condenser water temperature setpoint. The NTU correlation
for the cooling tower:

NTUt ¼ c
_mbcw
t =

P
n2NONtwr

t;n

VSDtwr
t

_mtwra;des

 !1þn

ð13Þ

where c and n are constants for a given tower type, _mtwra;des is

the design tower air flowrate, and _mbcw
t =

P
n2NONtwr

t;n is the con-
denser water flowrate through each operating tower. The term
VSDtwr

t
_mtwra;des is the actual mass flowrate of air through the tower,

which linearly varies with fan speed per the affinity laws. The
effectiveness of a counter-flow cooling tower:

etwr
t ¼ 1� expð�NTUt 1� Cr

t

� 	Þ
1� Cr

texpð�NTUt 1� Cr
t

� 	Þ ð14Þ

where,

Cr
t ¼

VSDtwr
t

_mtwra;des

_mbcw
t =

P
n2NONtwr

t;n
cp;cw
cst

� � ð15Þ

cst ¼
hsat;bcrw
t � hsat;bcsw

t

Tbcrw
t � Tbcsw

t

ð16Þ

cp;cw is condenser water-specific heat, Tbcsw
t and Tbcrw

t are chillers
condenser blended entering and leaving water temperatures,

respectively, hsat;bcrw
t and hsat;cbsw

t are the enthalpy of saturated air
at blended leaving and entering condenser water temperatures,
respectively. The effectiveness can then be used to calculate the
actual heat transfer for operating cooling towers:

_Q
twr

t;n ¼ VSDtwr
t

_mtwra;desetwr
t hsat;bcrw

t � hsat;wb
t

� �
ONtwr

t;n ð17Þ
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hsat;wb
t is the enthalpy of saturated air at the ambient wet-bulb

temperatures. The considered tower characteristics are in Table 5
in the Appendix.

2.1.4. Cooling & dehumidifying coils
Sensible and latent heat from the cooled space is transferred to

the chilled water in the coils by air. Coils maintain indoor comfort
levels by regulating air and water flowrates. In this work, a single
cooling coil representative of the entire building is modeled. The
intention is to capture the complex interaction between the chil-
lers’ temperature setpoints and the required air and water flow-
rates and, thus, the power required in the coils to satisfy the
building load. In this work, the coil is controlled to deliver the
design supply air conditions, ensuring that indoor comfort is
always maintained. However, information about occupancy and
air distribution can be used to control cooled-space humidity and
temperature more efficiently. The coil model used in this work
employs expressions derived by Wang et al. for the overall heat
transfer coefficient [41]:

NTUext
t ¼ 1

VSDcf
t _mcca;descp;a

NrowAface

acc
1 VSDcf

t V
a;des

� ��0:8
þ acc3

ð18Þ

NTUint
t ¼ 1

VSDsp
t
_mt

bswcp;sw
NrowAface

acc
2 VSDsp

t V
w;des

� ��0:8 ð19Þ

The denominators of the two expressions are based on Holmes
developed coil’s thermal resistance model as a function of fluids
face velocities [42]. acc

1 , a
cc
2 , and acc3 are experimentally obtained

set of coefficients in Holmes’s model, _mcca;des is the design coil
air flowrate, VSDsp

t _mbsw
t is the coil actual water flowrate, which lin-

early varies with speed per the affinity laws, Va;des and Vw;des are the
design coil air and water face velocities, respectively, cp;a is air

specific heat capacity, Aface is the coil face area, and Nrow are the
number of rows or passes. The air inlet conditions can be calcu-
lated from the known exit conditions and cooling demand:

hai ¼ min hae;des þ
_Q
D

t

VSDcf
t
_mcca;des

; hai;des

" #
ð20Þ

Tai
t ¼ Tae;des þ

_Qs
t

VSDcf
t
_mcca;descp;a

ð21Þ

_Q
D

t is the total cooling load, _Q
s

t is the sensible cooling load, hai;des

and hae;des are the enthalpy of air at the coil inlet and exit under

design conditions, respectively, and Tae;des is the coil design exit
temperature. The conditions at the dry to wet transition point
can be calculated from the known air and water boundary
conditions:

hx
t ¼ hai

t � cp;a Tai
t � Tdp

t

� �
ð22Þ

Tw;x
t ¼ VSDcf

t

VSDsp
t

 !
_mcca;des

_mbsw
t cp;sw

hai
t � hae;des � cp;a Tai

t � Tdp
t

� �h i
þ Tccsw

t

ð23Þ
Tccsw
t is the coil entering water temperature and Tdp

t is the dew-
point temperature. The superscript x represents the point of inter-
section between dry and wet sections. The air temperature at the
dry to wet transition is the dew point temperature and is com-
puted from known parameters. For the dry and wet section analy-
sis, we use Braun et al. [40] models for fully dry and fully wet coil
6

based on the NTU-effectiveness approach. In Braun’s model, the
coil is modeled as a counter-flow heat exchanger since the perfor-
mance of a cross-flow heat exchanger approaches that of a
counter-flow when the number of passes increases beyond
approximately-four. The NTU and effectiveness for the dry section
are as follow:

NTUdry
t ¼ 1

Ct � 1
ln

edryt � 1

Ctedryt � 1

 !
ð24Þ

edryt ¼ Tai
t � Tdp

t

Tai
t � Tw;x

t

ð25Þ

where,

Ct ¼ VSDcf
t

VSDsp
t

 !
_mcca;descp;a

_mbsw
t cp;sw

ð26Þ

We then compute the exit water temperature and the fraction
of the coil length in the dry section from:

Tccrw
t ¼ Tw;x

t þ Ct Tai
t � Tdp

t

� �
ð27Þ

f dryt ¼ NTUdry
t

NTUext
t

1þ Ct
NTUext

t

NTUint
t

 !
ð28Þ

The NTU and effectiveness for the wet section are as follow:

NTUwet
t ¼ NTUext

t

1þmt
NTUext

t

NTUint
t

� � 1� f dryt

� �
ð29Þ

ewet
t ¼ 1� exp �NTUwet

t 1�mtð Þ� 	
1�mtexp �NTUwet

t 1�mtð Þ� 	 ð30Þ

where,

mt ¼ VSDcf
t

VSDsp
t

 !
_mcca;des

_mbsw
t cp;sw

hsat;ccrw
t � hsat;ccsw

t

Tw;x
t � Tccsw

t

 !
ð31Þ

hsat;ccsw
t and hsat;ccrw

t are the enthalpy of saturated air at coil sup-
ply and return water temperatures, respectively. We can then cal-
culate the actual air exit enthalpy:

hae
t ¼ hx

t � ewet
t hx

t � hsat;ccsw
t

� �
ð32Þ

A feasible solution necessitates that hae
t � hae;des. Assumed cool-

ing coil parameters are in Table 6 in the Appendix.

2.1.5. Ice thermal storage
Ice storage stores thermal energy mainly in the form of latent

heat. There are two main types of ice thermal storage, internal
and external melt [43]. Unlike external melt, internal melt is
modularized ice storage with predictable charge and discharge
behavior. In internal melt, a secondary water-glycol mixture is
circulated through an inner circuit to freeze or melt the water
inside the tank. In external melt, ice comes into direct contact
with supply water, delivering a rapid discharge rate suitable for
specific applications. The earliest internal melt ice storage model
appears to be developed by Jekel [44] and was later improved by
Drees [45,46]. We use the model improved by Drees with specifi-
cations based on a product of CALMAC with 83 ton-hr nominal
capacity. Twenty tanks are balanced and joined in parallel, which
acts as a single ice tank with an equivalent thermal capacity of
1600 ton-hr. Control of the ice bank is accomplished by regulat-
ing the inlet temperature and flowrate as described by the heat
balance equation:
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_misw
t cp;sw Tisw

t � Tbsw
t

� �
¼ _H ¼ hsf _mis;ice

t �mis;tank
t cp;w _T

is

t ð33Þ

_misw
t is the circulating water-glycol mix flowrate, Tisw

t is the
water-glycol mixture temperature at the outlet of the storage tank,

and Tis
t is the average storage temperature. _misw

t cp;sw Tisw
t � Tbsw

t

� �
is

the rate of heat transfer to the circulating water-glycol mixture,
_mis;ice
t is the rate of ice formation, hsf is the enthalpy of fusion of

water, and mis;tank
t is the total mass of water in the tank, sensible

heat of water, _T
is

t is the rate of change of the average temperature
of the tank, cp;w is the specific heat of tank water. Sensible heat
change of ice can be neglected because of the reduced thermal
capacity of ice relative to water and the smaller temperature differ-
ence between ice and the freezing point of water. The rate of
change of enthalpy can also be obtained from the LMTD method
which is given by:

_H ¼ 1

Rint
t þ Rext

t

 !
Tisw
t � Tbsw

t

ln Tist �Tiswt
Tist �Tbswt

� �
2
64

3
75 ð34Þ

The external thermal resistance term Rext
t depends on both the

mode of operation, charging or discharging, and the state of

charge; both Rint
t and Rext

t are obtained from Drees’s model
[45,46]. Heat loss through tank walls is ignored since they are well
insulated with a self-discharge efficiency of 99.9% [47]. The charg-
ing of ice storage is divided into three stages, as shown in Fig. 3:
sensible, unconstrained phase change, and area-constrained phase
change. In sensible charging, the water temperature in the tank is
brought down to freezing temperature without ice formation.
Upon reaching freezing temperature, unconstrained phase change
initiates with uniform cylindrical ice formation around the tubes.
Once the ice formations intersect, heat transfer becomes increas-
ingly area constrained until all the water around the tubes is fro-
zen. Similarly, discharging of ice storage is divided into three
stages, also shown in Fig. 3: unconstrained phase change, area-
constrained phase change, and sensible. In the first stage, the ice
closest to the tube is melted. The water-glycol mixture passing
through the tubes is cooled down at the expense of 1) warming a
layer of liquid water between the outer surface of the tube and
the water–ice interface and 2) a receding liquid water–ice inter-
face. When the ice-liquid water interfaces intersect, heat transfer
reduces due to the reduced surface area of ice formations. Once
all ice has melted, the storage water temperature is gradually
Fig. 3. An illustration of the charging and discharging process in a cross-sectional
view of an 80 ton-hr internal melt ice storage tank is shown along the heat rate
curve. The intersection of ice formations when charging and water formations when
discharging reduces the heat transfer area. Charging is at �6 �C 4 kg/s, and
discharging at 8 �C 4 kg/s.

7

brought to the circulating water temperature. For this and all sub-
sequent figures, cooling demand is shown in tons or Ton (Ton of
Refrigeration).

Drees shows that the effectiveness defined as the ratio of actual
to the maximum temperature difference is insensitive to inlet tem-
perature but is a strong function of flow rate and state of charge.
This is used to reduce the storage model to a function of flow rate
and stage of charge. The storage effectiveness is defined as:

eis ¼ Tbsw � Tisw

Tbsw � Tis
ð35Þ

A 2-D effectiveness surface is generated from the simulation of
full storage charge and discharge cycles at multiple increments of
flow rates and linearly interpolated for all flowrates in-between to
obtain a function of the form:

eist ¼ f SoCt; _misw
t ; sgn SoCtþ1 � SoCtð Þ� 	 ð36Þ

SoCt is the storage state of charge. The 2-D surface is indexed by
three parameters: the state of charge, the inlet flowrate, and mode
(charging/discharging). Equation (35) is re-arranged to compute
the storage outlet temperature as follows:

Tisw
t ¼ Tbsw

t � eist ðTbsw
t � Tis

t Þ ð37Þ
The state of charge is updated for the next time step as follows:

SoCtþ1 ¼ SoCt þ
_misw
t cp;sw Tisw

t � Tbsw
t

� �
Cis Dt ð38Þ

Cis is ice storage thermal capacity and Dt is the time step in sec-
onds. The storage effectiveness, eist , is updated in increments of
10 min to factor in any change in charge and discharge rates within
a time step. Simulation of ice storage operation under different
water flowrates and inlet temperatures are shown in Fig. 4 (A)
and (B) for charging and Fig. 4 (C) and (D) for discharging. Note that
the difference in effectiveness due to inlet temperature is negligi-
ble. Furthermore, daily storage operation requires an inlet temper-
ature close to �6�Cwhich can significantly depress chiller
performance and cooling capacity.

2.2. Overall problem formulation

The overall framework is to determine the scheduling of equip-
ment, setpoints, and storage dispatch amount such that the cooling
load is met with the least cost. This is influenced by the cooling
load, storage capacity and utilization, and TOU rates. The models
developed for each key power-consuming component appear in
the overall formulation with several operational and balancing
constraints. The cost which is to be minimized is given byP

tc
e
t P

Sys
t , where:

PSys
t ¼

X
i2I

Pchl
t;i þ Ppp

t;i þ Pcp
t;i

� �
þ
X
n2N

Ptwr
t;n þ Psp

t þ Pcf
t ð39Þ

cet is TOU rate at time step t, and PSys
t is total system power use at

time step t. The first constraint bounds operating chillers to within
permitted load ratios:

PLRmin
i � PLRt;i � PLRmax

t;i ð40Þ

where PLRt;i ¼ _Q
chl

t;i =
_Q
des

i . PLRmin
i is the minimum chillers operat-

ing part load ratio obtained from EnergyPlus and

PLRmax
t;i ¼ _Qmax

t;i = _Qdes
i is from the estimated chiller cooling capacity.

The second and third constraints bound and set the initial storage
state of charge:

0 � SoCt � 1 ð41Þ



Fig. 4. Simulation of ice storage operation under different inlet conditions for charge mode with (A) charging rate and (B) charging effectiveness, and discharge mode with (C)
discharge rate and (D) discharging effectiveness. Storage is fully charged at an SoC of 100 and fully discharged at an SoC of 0.
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SoC0 ¼ 0 ð42Þ
The fourth constraint bounds the fraction of the coil in the dry

section:

0 � f dryt � 1 ð43Þ
Constraints five to seven are three load balancing constraints:X
i2I PLRt;i

_Q
des

i

� �
� _misw

t cp;sw Tisw
t � Tbsw

t

� �
� _Q

D

t ¼ 0 ð44Þ

VSDsp
t
_mbsw
t cp;sw Tccrw

t � Tccsw
t

� 	� _Q
D

t ¼ 0 ð45Þ

VSDcf
t
_mcca;des hai

t � hae
t

� �
� _Q

D

t ¼ 0 ð46Þ

The constraints ensure the building demand, _Q
D

t , is met by the
chiller and storage in (44) and delivered to the coil in the water-
side in (45) and the air side in (46). The fourth balancing constraint
balances mass flowrate to storage and available mass flowrate in
the primary loop whic is given by:

_mbsw
t � _misw

t � 0 ð47Þ
The final and fifth balancing constraint balances the heat

rejected by the chillers and cooling towers as follows:

_mbcw
t cp;cw Tbcrw

t � Tbcsw
t

� �
�
X
n2N

_Qtwr
t;n ON

twr
t;n ¼ 0 ð48Þ

The decision variables are: chillers and tower scheduling (ONchl
t;i

and ONtwr
t;n ), chillers temperatures setpoints (Tsw

t;i ), towers tempera-
8

ture setpoints and speed (Tbcsw
t and VSDtwr

t ), coil fan and pump

speeds (VSDsp
t and VSDcf

t ), and flowrate to storage ( _misw
t ).

Designated temperatures and flowrates symbols at various
system nodes that appear in the problem formulation are
shown in Fig. 5. The total flowrates in the primary and con-
denser loops are dependent on the design evaporator and con-
denser flowrates, respectively, for operating chillers, which are
given by:

_mbsw
t ¼

X
i2I

_msw
i ONchl

t;i ð49Þ

_mbcw
t ¼

X
i2I

_mcw
i ONchl

t;i ð50Þ
Primary loop blended supply and return temperature are calcu-

lated from the mixing of streams as follows:

Tbsw
t ¼

X
i2I

_msw
i

_mbsw
t

Tsw
t;i ON

chl
t;i ð51Þ

Tbrw
t ¼ VSDsp

t T
ccrw
t þ 1� VSDsp

t

� 	
Tccsw
t ð52Þ

The water-glycol mixture temperature at the coil inlet deviates
from the blended supply water temperature based on the storage
dispatch amount:

Tccsw
t ¼ 1� _misw

t

_mbsw
t

 !
Tbsw
t þ _misw

t

_mbsw
t

Tisw
t ð53Þ

The temperature of the blended condenser water that is return-
ing to the cooling tower is:



Fig. 5. Considered chilled water system with ice thermal storage. Highlighted variables in orange are the decision variables; variables in black are consequences of the
decision variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Tbcrw
t ¼ Tbcsw

t þ
P

i2I Pchl
t;i þ _Qchl

t;i

� �
_mbcw
t cp;cw

ð54Þ

A water-glycol mixture is considered in the primary and the
secondary loop to allow safe operation at sub-freezing tempera-
tures. The thermal capacity of the mixture is depressed by about
10 % relative to pure water.

2.3. Optimization strategy

2.3.1. Bi-level optimization
Because of the nonlinearity and the large number of degrees of

freedom, the problem described above cannot be reliably solved
using traditional gradient-based or meta-heuristic optimization
strategies. As illustrated in Fig. 6, the solution approach is to
decompose the problem into a bi-level optimization formulation
to decouple the equipment scheduling problem at each hour from
storage dispatch. This simplifies the scheduling problem suffi-
ciently to allow for the use of the genetic algorithm for both levels.
The upper level minimizes daily operation costs and decides the
storage dispatch amount over the next 24 h. The decided dispatch
amount is fed to the lower-level optimizer to solve the equipment
scheduling problem at each hour sequentially and return the corre-
sponding system power consumption over the next 24 h. The
lower-level problem is constrained by six load and flowrate bal-
ancing constraints; the added sixth constraint ensures that the dis-
patched amount in the lower level agrees with the decided
dispatch amount by the upper-level optimizer. The balancing con-
straints are handled using the penalty function method. Storage
dispatch amounts decided by the upper-level optimizer that lead
to infeasible solutions are penalized. The bi-level objective func-
tions are:

minObj1 ¼
X
t2T

cet P
Sys
t ð55Þ

minObj2t ¼ PSys
t =PSys;des

� �a
þ {t ; ð56Þ
9

{t ¼

a1 1� _misw
t cp;sw Tiswt �Tbswtð Þþ _Q

D

tP
i2I PLRt;i _Q

des
i

� 	
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þa2
VSDsp

t
_mbsw
t cp;sw Tccrwt �Tccswtð ÞþD

_Q
D

t þD
� 1
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VSDcf
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þa6 SoCt � SoCulo
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ð57Þ

where a, a1 to a6, and b1 to b6 are the penalty factors, and SoCulo
t

is the storage dispatch amount decided by the upper-level, and D is
an arbitrary small load (less than1% of _Qdes) with the same unit as
_Q
D

t . Bound constraints on chillers part load ratio and storage state
of charge in (40)-(41) are enforced by resetting the violating vari-
able to the nearest bound. This inevitably leads to violation of bal-
ancing constraints and thus discourages the genetic algorithm
from exploring that search space area. Solutions that violate the
bound constraint in (43) cannot be truncated and are better when
eliminated from the gene pool in the genetic algorithm.

Constraints are relaxed to allow for a violation of no more than
3 %, although they largely fall far below 1 %. The system power use
over the next 24 h, as determined by the lower-level optimizer, is
returned to the upper-level optimizer to update the storage dis-
patch guess for the next iteration. The inputs for the upper level
are the TOU electricity prices, and the inputs for the lower level
are the cooling load (sensible and latent), ambient wet-bulb tem-
perature, and storage state of charge at the end of the previous
time step. The decision variable for the upper-level problem is
the storage dispatch amount (DSoCt) and the decision variables
for the lower-level problem are setpoints

(Tsw
t;i ; T

bcsw
t ; _misw

t ; VSDcf
t ; VSDsp

t ; VSD
twr
t ) and equipment scheduling



Fig. 6. Bi-level optimization strategy. the upper decided dispatch is passed down to the lower-level optimizer to solve the equipment scheduling problem sequentially.
Infeasible storage dispatch at a given hour is rejected and penalized. The upper-level optimizer input is the TOU tariff, and lower-level optimizer inputs are the sensible and
latent cooling load and ambient wet-bulb temperature. The genetic algorithm is applied to both levels.
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(ONchl
t;i , and ONtwr

t;n ). The converged storage dispatch amount
curve (DSoC v. time) is used to adjust equipment sequencing and
setpoints at the current time step before re-solving for the
next 24 h.

2.3.2. Parameters tuning
Balancing constraints in the lower-level problem are handled

using the penalty function method; this makes the objective func-
tion subject to influence by both the system power use as well as
violations of balancing constraints. This poses a challenge for the
genetic algorithm to assess the population’s fitness effectively.
There are 13 penalty factors in (56)-(57); manual tuning of the
13 penalty factors is difficult and cumbersome, especially consider-
ing the impact of the cooling load, ambient wet-bulb temperature,
and storage use on the solution space. In addition to penalty fac-
tors, genetic algorithm parameters such as population size, cross-
over rate, number of generations, number of stall iterations, and
elite count, among others, can highly impact the quality of the con-
verged solution. A more systematic and robust approach is to tune
the penalty factors and genetic algorithm parameters with a train-
ing dataset using an optimizer for which we use particle swarm
optimization.

Training data are manufactured by sampling various possible
operating combinations of cooling load, ambient wet-bulb temper-
ature, and storage state of charge and dispatch amount. Feasible
solutions, irrespective of optimality, should satisfy the constraints
and hence can be used to tune the penalty factors. The intention is
to allow the genetic algorithm to distinguish apart the contribution
10
of each variable to the objective function, better assess the popula-
tion fitness and locate a feasible, globally optimal solution. The
considered manufactured training data are shown in Fig. 7; the
dataset contains 237 unique combinations of possible cooling
demand, ambient wet-bulb temperature, storage dispatch amount,
and storage state of charge. The objective function for the penalty
factor tuning optimization is:

minObj ¼
X

z2Z Pz þ b{z
� � ð58Þ

and,

Pz ¼ PSys
z {z � tol

F Otherwise

(
ð59Þ

where subscript z is data point index set {1, 2, 3, . . ., 237}
denoted by Z and b is manually adjusted constant such that b{z
sufficiently reduces constraints violation but not large enough to
meaningfully impact the objective function, tol is the constraint
relaxation tolerance (taken as 3 % in this study), and F penalizes
(F	PS

ys,des) infeasible solutions (Cz > tol) Proper tuning of the pen-
alty factors can significantly diminish and eliminate the problem
of premature convergence in the genetic algorithm. The optimal
system COP for three modes of storage operation (charging, dis-
charging, and idle) generated for the considered system under a
range of cooling loads are shown in Fig. 8 at a design wet-bulb tem-
perature of 25 �C Despite the high nonlinearity and complexity of
the considered problem, the tuned penalty factor and genetic algo-
rithm parameters resulted in near-smooth and continuous system



Fig. 7. Training data. (A) Cooling demand and ambient wet-bulb temperature, and (B) Storage dispatch amount and state of charge. This training set has 237 unique data
points, each an independent input condition for the scheduling problem. A sensible heat ratio of 0.7 is assumed for the cooling load.

Fig. 8. System COP for a range of cooling loads at a wet-bulb temperature of 25 �C when (A) charging at a rate of 160 ton-hr/hr, (B) discharging at a rate of 160 ton-hr/hr, and
(C) not using ice storage. The total load includes the cooling load and the storage charge amount.
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performance curves. The curve’s shape is a consequence of the
three chillers system. There are two configurations for operating
this system when charging at a rate of 160 tons in Fig. 8 (A) since
the smallest chiller cannot provide sufficient cooling on its own. At
a total load lower than 300 tons, the system utilizes a more effi-
cient configuration of two centrifugal chillers for charging.When
discharging or idling, like in Fig. 8 (B) and (C), the more complex
shape is caused by the operation of the three chillers. At lower
loads, it is sufficient to use one chiller to reduce parasitic pump
energy use. However, as the load increase, more thoughtful consid-
eration is necessary to schedule the remaining chillers. At higher
loads, the system is obligated to use all chillers.

Meta-heuristic algorithms are computationally taxing as they
depend on exploring the solution space to locate the globally
optimal solution, especially with the large population size
(1000–5000) needed to solve the highly non-linear problem at
hand. To tackle the problem of long run time, the lower-level
problem is pre-solved under a range of cooling loads, storage
use and state, and ambient air conditions; tri-linear interpolation
is applied between the data points. This reduces the run time to
1–5 min, depending on processing power, problem size, and
complexity.
11
3. Results & discussion

We compare the proposed optimal control strategy to two pop-
ular and commonly used heuristic strategies for thermal energy
storage dispatch: chiller priority control and storage priority con-
trol. In chiller priority control, chillers are loaded at capacity, and
storage is used to supplement additional cooling needs. This strat-
egy aims to maximize the efficiency of the chillers. In storage pri-
ority control, full storage capacity is utilized, and storage dispatch
is prioritized over the chillers. Storage supplies a steady cooling
rate, and the chillers meet the residual and fluctuating cooling
demand. Storage is charged at the maximum rate the chillers allow
in both heuristic strategies. For storage and chiller priority con-
trols, the scheduling problem is solved heuristically as follows:

& 212-tons centrifugal chillers with VSD are operated first before
the 153-tons screw chiller is started because of the higher
efficiency

& Charging at chillers supply temperature setpoint of �7 �C
& Discharging at chillers design supply temperature setpoint of
6 �C temperature is gradually increased if necessary to maintain
storage dispatch amount
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& Cooling tower condenser water temperature setpoint based on
design approach temperature of 3 �C (difference between leav-
ing water and ambient air wet-bulb temperatures)

& Operating cooling tower is fully loaded before the second one is
started

The three storage dispatch strategies are compared in three sce-
narios of cooling loads under TOU rates shown in Fig. 9. The use of
ice storage becomes necessary to satisfy building cooling demand
when the load exceeds the design chillers’ cooling capacity of
570 tons. Scenario 1, which has the highest total cooling needs,
begins at 8 AM and terminates at 6 PM. The load peaks at 600–
700 tons and requires 976 ton-hr of stored energy (61 % of storage
capacity) to satisfy building cooling demand. Scenario 2 has inter-
mediate cooling needs and similarly starts at 8 AM and terminates
at 6 PM. The load peaks at 550–650 tons and require 544 ton-hr of
stored energy (34 % of storage capacity). Scenario 3 has the least
cooling needs, starting later at 9 AM and ending earlier at 5 PM.
This demand scenario peaks at 500–600 tons and requires only
144 ton-hr of stored energy (9 % of storage capacity). Simple two
levels TOU tariffs are considered with an on-peak period lasting
8 h between 8 AM and 4 PM and an off-peak period otherwise.
The TOU tariff doubles from $0.1/kWh in the off-peak period to
$0.2/kWh in the on-peak period, coinciding with a high building
cooling load. For all three scenarios, the ambient wet-bulb temper-
ature is lower during early morning hours and higher during the
evening, which overlaps with the cooling load and slightly
depresses the chiller capacity.

The formulated problem is solved for the three scenarios using
each of the three considered strategies, and the results are tabu-
lated in Table 1. The hourly load contribution from each chiller
and the storage to meet the cooling demand is shown in Fig. 10.
The hourly system characteristics for all scenarios are shown in
Fig. 11 with (A) system operation cost, (B) system total energy
use, (C) chiller energy use, and (D) auxiliary equipment energy
use, and in Fig. 12 with (A) system COP, (B) blended chillers evap-
orator leaving temperature, (C) blended chillers condenser leaving
water temperature, (D) storage dispatch amount, and (E) flowrate
to storage. Optimal dispatch and equipment scheduling reduce
operation costs by 17 %, 19 %, and 23 %, and total energy use by
9 %, 5 %, and 1 % for Scenario 1, 2, and 3, respectively, relative to
chiller priority control. Although chiller priority control attempts
Fig. 9. Considered hourly (A) three scenarios of cooling load, (B) TOU tariffs structure, a
sensible and 30% latent.
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to maximize chillers’ efficiency, the missed opportunity cost from
load shifting combined with sub-optimal chiller scheduling
resulted in a significantly higher system cost. Relative to storage
priority control, optimal control reduces operation costs by 14 %,
11 %, and 11 %, and total energy use by 12 %, 11 %, and 11 % for Sce-
nario 1, 2, and 3, respectively. In addition to cost reduction, the
cost-optimal control system reduced daily energy use, which cor-
responds to carbon emissions reduction. Although auxiliary equip-
ment energy use [shown in Fig. 11 (D)] is small and minimally
impacts the overall system energy use compared to chillers’ energy
use [shown in Fig. 11 (C)], their interaction with the chillers signif-
icantly impacts chillers’ performance and consequently their
energy use.

Storage is more efficiently charged in the optimal control com-
pared to heuristic strategies; the cost-optimal control system only
utilizes the more efficient 212-tons centrifugal chillers with VSD
for storage charging. Although it prolongs the charging period by
an additional hour compared to storage priority control, it evades
running the chillers at a reduced part-load ratio and thus increases
overall efficiency. The utility from the higher flowrate provided by
the third chiller is diminished by the deterioration of ice storage
effectiveness. It is worth noting that the storage was not fully
charged in optimal control under all considered scenarios to avoid
the increased thermal resistance around the ice storage coils at the
end of the charging cycle. For all strategies, storage was charged at
a water-glycol mixture inlet supply temperature of �7 �C as shown
in Fig. 12 (B).

In Scenario 1, the cooling demand far exceeded the design chil-
ler capacity, which required using all three chillers. The higher effi-
ciency attained in the optimal control is primarily due to the
optimal loading of the three chillers. The model results suggested
loading the screw chiller fully and equally part-loading the 212
tons VSD centrifugal chillers. As the demand is reduced in Scenario
2 and further in Scenario 3, the screw chiller is progressively dis-
placed, and when operated, it is fully loaded. An exception is in
Scenario 3 at 3 PM, where the use of a screw chiller was necessary
to provide sufficient water flowrate to discharge the ice storage.
Not only that, but the model also attempts to operate the VSD cen-
trifugal chillers at their maximum efficiency point with a part load
ratio between 0.8 and 0.9. This is more easily accomplished in Sce-
nario 3 when storage dispatch is less constrained by the cooling
demand.
nd (C) ambient wet-bulb temperature profiles. The cooling load is divided into 70%



Table 1
Daily cost, energy use, and storage utilization for the considered scenarios and control strategies.

Optimization Strategy Cost ($/day) Energy (kWh/day) Storage Utilization (% of Capacity) Difference to Optimal System Cost (%)

Scenario 1 Chiller Priority Control 1070 6434 61 17
Storage Priority Control 1045 6610 100 14
Optimal Control 916 5888 96 –

Scenario 2 Chiller Priority Control 909 5215 34 19
Storage Priority Control 852 5485 100 11
Optimal Control 766 4954 96 –

Scenario 3 Chiller Priority Control 746 4068 9 23
Storage Priority Control 675 4470 100 11
Optimal Control 606 4013 96 –

Fig. 10. Cooling demand contribution breakdown from each chiller and storage for the three control strategies. From the left to right. chiller priority control, storage priority
control, and optimal storage control. The system comprises two 212-tons centrifugal chillers with VSD (Carrier 19XR) and one 153-tons screw chiller (Trane RTHB).
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Supply water flowrate to ice storage is shown in Fig. 12 (E); the
reduced flowrate in the optimal control strategy caused by switch-
ing off the screw chiller is traded with an increased supply temper-
13
ature during discharge, enhancing system COP. Compared to
heuristic strategies, discharging of storage largely terminates
before the end of on-peak electricity pricing, further contributing



Fig. 11. For the three control strategies, hourly systems. (A) system operation cost; (B) total system electric energy use; (C) total energy use by all chillers excluding auxiliary
equipment; (D) auxiliary equipment energy use which includes primary, secondary and condenser pumps, and towers and coil fans.
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Fig. 12. For the three control strategies, hourly systems. (A) COP, (B) blended chillers supply temperature; (C) blended chillers condenser leaving water temperature; (D)
storage dispatch amount curve; (E) water flowrate to ice storage. System COP is the ratio of total chillers thermal load to the overall system electric load.
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Fig. 13. Scenario 1 with a demand charge of $20/kW. (A) Breakdown of cooling demand contribution from each chiller and storage and (B) System electric energy use. We
assume the demand in Scenario 1 is repeated daily for a month representing a high cooling demand season.
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to cost savings. This was achieved by re-setting the water supply
temperature at the outlet of the chillers above the design point
by 2–3 �C which enhanced the chillers’ cooling capacity, particu-
larly the 153-tons chiller with a positive displacement screw com-
pressor. Other sources of enhanced system COP are lower
condensing temperatures, specifically during the discharging per-
iod, shown in Fig. 12 (C).

We resolved the formulated problem with the addition of a
demand charge of $20/kW applied for Scenario 1, the scenario with
the highest cooling demand. We make the assumption that the
demand in Scenario 1 is repeated daily for a month. Our model
result suggests that the cost-optimal system can reduce peak elec-
tric demand by 75 kW and cost from demand charges by 17 % rel-
ative to storage priority and 113 kW and 26 % relative to chiller
priority controls. The inclusion of the demand charge results in
an increase in daily cost from energy use from $916/day to
$928/day. Despite the increased thermal resistance around the
ice storage coils at the end of the charging cycle, the inclusion of
demand charge results in the system fully utilizing the storage
capacity for load shifting and peak demand reduction. Fig. 13
shows the cost-optimal system load contribution breakdown in
(A) and hourly energy use in (B) when a demand charge of $20/
kW is applied to Scenario 1.
4. Conclusion

Soaring demand for energy-intensive space cooling mandates a
more sustainable cooling approach to reducing carbon emissions.
In regions with a TOU rate, thermal energy storage can reduce
required chiller cooling capacity and electricity bill charges
through load shifting and peak shaving. In this paper, we propose
a solution to the optimal scheduling and dispatch problem of
multi-chiller chilled water systems with ice thermal storage under
TOU rates. Physics-based steady-state models are considered for
the ice thermal storage and the key power-consuming compo-
nents, including the chillers, cooling towers, water pumps, and
cooling coils. The solution strategy is to decompose the problem
into bi-level optimization to decouple the equipment scheduling
problem from storage dispatch, which sufficiently simplifies the
problem. The genetic algorithm is used to solve the simplified
problem. The upper level minimizes operation costs and decides
16
the storage dispatch amount that is fed to the lower-level opti-
mizer to solve the equipment scheduling problem sequentially
and return the subsequent system power consumption. Con-
straints in the lower-level problem are handled using the penalty
function method. Tuning the penalty factors and genetic algorithm
parameters using an optimizer and training data diminished and
eliminated the premature convergence problem. This proposed
novel approach negates the need for simplistic system models for
complex space cooling and heating applications.

We compared the developed optimal control strategy to two
commonly used heuristic storage strategies: chiller priority control
and storage priority control, in three scenarios of cooling demand
under TOU tariffs. The model results suggest that the optimal con-
trol strategy consistently offered cost reduction by 17–23 % rela-
tive to chiller priority control and 11–12 % relative to storage
priority control. Furthermore, optimal equipment and scheduling
dispatch reduced energy use by 1–9 % relative to chiller priority
and 11–12 % relative to storage priority control. When we re-
considered Scenario 1 with a demand charge of $20/kW, the opti-
mal system can reduce peak demand power and cost from demand
charge by 75 kW and 17 %, respectively, relative to storage priority
and by 113 kW and 26 % relative to chiller priority controls. The
benefits from the proposed strategy are amplified when a more
sophisticated tariff structure is present. Lastly, at the cost of
increased computational time, the proposed approach can be used
to decide storage dispatch over a more extended period than 24 h.
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Table 6
Cooling and dehumidification coil characteristics

Item Symbol Value Note
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Appendix
Table 5
Cooling tower characteristics

Item Symbol Value Note

NTU correlation
parameters

c 3.76 Cooling towers based on Dallas/Fort
Worth Airport [40]n -0.63

Design heat
rejection
capacity

- 360
ton

Each

Design air
flowrate

_mtwra
t

20
kg/s

At 100% fan speed

Design water
flowrate

_mbcw
t

28
kg/s

All chillers are operating

Design tower
approach
temperature

- 3 �C Difference between leaving water
temperature and wet-bulb
temperature

Design wet-bulb
temperature

Twb 25 �C Reference temperature

Coil thermal resistance
coefficient

a1 0.596
10�3 K/

kg �m5
2 � s15

4

High-performance
coils

a2 0.217
10�3 K/

kg �m5
2 � s15

4

a3 0.286 K/kW
Design air flowrate _mcca;des 120 kg/s 100% fan speed
Max air inlet enthalpy hai;des 55.6 kJ/kg 27 �C at 50% RH

Design air outlet
enthalpy

hae;des 34.1 kJ/kg 12 �C at 100% RH

Air-side temperature
drop

- 15 �C 27 �C ? 12 �C

Water-side
temperature rise

- 13.5 �C 3.5 �C ? 16 �C

Coil face area Aface 39 m2 Normal to air-flow
direction

Number of rows Nrow 5.1 Thickness of the
coils

Design water face
velocity

Vw;des 1 m/s Normal to flow
direction

Design air face velocity Va;des 2.5 m/s Normal to flow
direction

Table 2
Selected water chillers’ characteristics

Item Water-Cooled Chillers

Trane RTHB Carrier 19XR

Design cooling capacity 151 tons 211 tons
Evaporator temperature rise 9.3�C 9.8�C
Condenser temperature rise 9.4�C 10.8�C
Design COP 4.6 4.7
Compressor type Screw Centrifugal
Capacity control Slide Valve VSD
Evaporator water flowrate 13.50 kg/s 17.79 kg/s
Condenser water flowrate 15.77 kg/s 19.56 kg/s
Refrigerant type R-22 R-134a

Table 3
Gordon-Ng model fitted parameters for the selected chillers

Item Water-Cooled Chillers

Trane RTHB Carrier 19XR

DSintt
0.045 kW/K 0.042 kW/K

DSintQt
0.05 kW/K -0.05 kW/K

R 0.030 K/kW 0.037 K/kW

_Q
leak;eqv
t

89.1 kW 142.8 kW

Table 4
Pumps and fans constants

Item Chiller

Trane RTHB Carrier 19XR

Primary 5 kW 7 kW
Condenser 4 kW 5 kW
Variable Speed 10 kW
Tower fan 10 kW
Coil fan 100 kW

17
References

[1] F. Jabari, M. Mohammadpourfard, B. Mohammadi-ivatloo, Energy efficient
hourly scheduling of multi-chiller systems using imperialistic competitive
algorithm, Comput. Electr. Eng. 82 (2020), https://doi.org/10.1016/
j.compeleceng.2020.106550 106550.

[2] K.M. Powell, W.J. Cole, U.F. Ekarika, T.F. Edgar, Optimal chiller loading in a
district cooling system with thermal energy storage, Energy 50 (1) (2013) 445–
453, https://doi.org/10.1016/j.energy.2012.10.058.

[3] J. Deng, S. He, Q. Wei, M. Liang, Z. Hao, H. Zhang, Research on systematic
optimization methods for chilled water systems in a high-rise office building,
Energy Build. 209 (2020), https://doi.org/10.1016/j.enbuild.2019.109695
109695.

[4] K.P. Lee, T.A. Cheng, A simulation-optimization approach for energy efficiency
of chilled water system, Energy Build. 54 (2012) 290–296, https://doi.org/
10.1016/j.enbuild.2012.06.028.

[5] M. Ali, V. Vukovic, M.H. Sahir, G. Fontanella, Energy analysis of chilled water
system configurations using simulation-based optimization, Energy Build. 59
(2013) 111–122, https://doi.org/10.1016/j.enbuild.2012.12.011.

[6] R. Iru et al., The Optimal Control Strategy for Chilled Water System in Central
Air Conditioning Systems, in: 43rd Annual Conference of the IEEE Industrial
Electronics Society, 2017, pp. 8150–8155, https://doi.org/10.1109/
IECON.2017.8217430.

[7] A.J. Ardakani, F.F. Ardakani, S.H. Hosseinian, A novel approach for optimal
chiller loading using particle swarm optimization, Energy Build. 40 (12) (2008)
2177–2187, https://doi.org/10.1016/j.enbuild.2008.06.010.

[8] S. Huang, W. Zuo, M.D. Sohn, Amelioration of the cooling load based chiller
sequencing control, Appl. Energy 168 (2016) 204–215, https://doi.org/
10.1016/j.apenergy.2016.01.035.

[9] S.R. Thangavelu, A. Myat, A. Khambadkone, Energy optimization methodology
of multi-chiller plant in commercial buildings, Energy 123 (2017) 64–76,
https://doi.org/10.1016/j.energy.2017.01.116.

[10] Y.C. Chang, Genetic algorithm based optimal chiller loading for energy
conservation, Appl. Therm. Eng. 25 (17–18) (2005) 2800–2815, https://doi.
org/10.1016/j.applthermaleng.2005.02.010.

[11] D. Zhang, S. Member, P.B. Luh, L. Fellow, J. Fan, S. Member, Chiller Plant
Operation Optimization : Primary – Secondary Systems, IEEE Trans. Autom.
Sci. Eng. 15 (1) (2018) 341–355.

[12] D. Zhang, P.B. Luh, J. Fan, S. Gupta, Chiller Plant Operation Optimization with
Minimum Up/Down Time Constraints, IEEE Robot. Autom. Lett. 3 (1) (2018) 9–
15, https://doi.org/10.1109/LRA.2017.2723467.

[13] N. Trautman, A. Razban, J. Chen, Overall chilled water system energy
consumption modeling and optimization, Appl. Energy 299 (2021), https://
doi.org/10.1016/j.apenergy.2021.117166 117166.

[14] I. Al-Aali, V. Modi, ‘‘Examining Ice Storage and Solar PV As a Potential Push
Toward Sustainability for Qatar”, in ASME International Mechanical Engineering
Congress and Exposition, Proceedings (IMECE) vol (2018) 6B–2018, https://doi.
org/10.1115/IMECE2018-86709.

[15] W.S. Lee, Y.T. Chen, T.H. Wu, Optimization for ice-storage air-conditioning
system using particle swarm algorithm, Appl. Energy 86 (9) (2009) 1589–
1595, https://doi.org/10.1016/j.apenergy.2008.12.025.

[16] J.A. Candanedo, V.R. Dehkordi, M. Stylianou, Model-based predictive control of
an ice storage device in a building cooling system, Appl. Energy 111 (2013)
1032–1045, https://doi.org/10.1016/j.apenergy.2013.05.081.

https://doi.org/10.1016/j.compeleceng.2020.106550
https://doi.org/10.1016/j.compeleceng.2020.106550
https://doi.org/10.1016/j.energy.2012.10.058
https://doi.org/10.1016/j.enbuild.2019.109695
https://doi.org/10.1016/j.enbuild.2012.06.028
https://doi.org/10.1016/j.enbuild.2012.06.028
https://doi.org/10.1016/j.enbuild.2012.12.011
https://doi.org/10.1109/IECON.2017.8217430
https://doi.org/10.1109/IECON.2017.8217430
https://doi.org/10.1016/j.enbuild.2008.06.010
https://doi.org/10.1016/j.apenergy.2016.01.035
https://doi.org/10.1016/j.apenergy.2016.01.035
https://doi.org/10.1016/j.energy.2017.01.116
https://doi.org/10.1016/j.applthermaleng.2005.02.010
https://doi.org/10.1016/j.applthermaleng.2005.02.010
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0055
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0055
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0055
https://doi.org/10.1109/LRA.2017.2723467
https://doi.org/10.1016/j.apenergy.2021.117166
https://doi.org/10.1016/j.apenergy.2021.117166
https://doi.org/10.1115/IMECE2018-86709
https://doi.org/10.1115/IMECE2018-86709
https://doi.org/10.1016/j.apenergy.2008.12.025
https://doi.org/10.1016/j.apenergy.2013.05.081


I. Al-Aali, A. Narayanaswamy and V. Modi Energy & Buildings 274 (2022) 112422
[17] H.J. Chen, D.W.P. Wang, S.L. Chen, Optimization of an ice-storage air
conditioning system using dynamic programming method, Appl. Therm. Eng.
25 (2–3) (2005) 461–472, https://doi.org/10.1016/j.
applthermaleng.2003.12.006.

[18] K. Deng et al., Model Predictive Control of Central Chiller Plant With Thermal
Energy Storage Via Dynamic Programming and Mixed-Integer Linear
Programming, IEEE Trans. Autom. Sci. Eng. 12 (2) (2015) 565–579, https://
doi.org/10.1109/TASE.2014.2352280.

[19] D. Rohde, B.R. Knudsen, T. Andresen, N. Nord, Dynamic optimization of control
setpoints for an integrated heating and cooling system with thermal energy
storages, Energy 193 (2020), https://doi.org/10.1016/j.energy.2019.116771
116771.

[20] Q. Zhu, Q. Li, B. Zhang, L. Wang, G. Li, R. Wang, Capacity optimization for
electrical and thermal energy storage in multi-energy building energy system,
Energy Procedia 158 (2019) 6425–6430, https://doi.org/10.1016/
j.egypro.2019.01.183.

[21] S. Sanaye, A. Shirazi, Thermo-economic optimization of an ice thermal energy
storage system for air-conditioning applications, Energy Build. 60 (2013) 100–
109, https://doi.org/10.1016/j.enbuild.2012.12.040.

[22] J. Yu, X. Yang, A. Zhao, M. Zhou, Y. Ren, Research on Optimal Control Algorithm
of Ice Thermal-Storage Air-Conditioning System, in: Advancements in Smart
City and Intelligent Building, 2019, pp. 207–218.

[23] R. Kamal, F. Moloney, C. Wickramaratne, A. Narasimhan, D.Y. Goswami,
Strategic control and cost optimization of thermal energy storage in buildings
using EnergyPlus, Appl. Energy 246 (April) (2019) 77–90, https://doi.org/
10.1016/j.apenergy.2019.04.017.

[24] M. Marghany, ‘‘Principles of genetic algorithm,” Synth. Aperture Radar Imaging
Mech. Oil Spills, pp. 169–185, 2020, 10.1016/b978-0-12-818111-9.00010-0.

[25] D.A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers,
An Introd. to Genet Algorithms Sci. Eng. (1999), https://doi.org/10.1142/3904.

[26] P. Bajpai, M. Kumar, Genetic algorithm–an approach to solve global
optimization problems, Indian J. Comput. Sci. Eng. 1 (3) (2010) 199–206.

[27] S.T. Taylor, Chilled Water Plant Design Guide, Energy Des. Resour. (2009) 281.
[28] J. McQuiston, F., Parker, J., & Spitler, Heating, Ventilating and, Air Conditioning,

Sixth. 2005.
[29] S. Hanson, M. Schwedler, and B. Bakkum, ‘‘Chiller System Design and Control,”

2011.
[31] K. C. ; Ng and Jeffrey M. Gordon, ‘‘Cool Thermodynamics : The Engineering and

Physics of Predictive, Diagnostic and Optimization Methods for Cooling
Systems,” ProQuest Ebook Central. 2001.
18
[32] W. Jiang and T. A. Reddy, ‘‘Reevaluation of the Gordon-Ng performance models
for water-cooled chillers,” ASHRAE Trans., vol. 109 PART 2, pp. 272–287, 2003.

[33] M. Hydeman, N. Webb, P. Sreedharan, and S. Blanc, ‘‘Development and testing
of a reformulated regression-based electric chiller model,” ASHRAE Trans., vol.
108 PART 2, pp. 1118–1127, 2002.

[34] P. Haves, Development and testing of a reformulated regression-based electric
chiller model: Discussion, ASHRAE Trans. vol. 108 PART 2 (2002) 1127.

[35] P. Hanlon, Compressor Handbook. 2020.
[36] ASHRAE, Chapter 38: Compressors. ASHRAE, 2020.
[37] P. N. Bali, M. E. Arsana, and P. N. Bali, ‘‘Condenser-Evaporator Approach

Temperatures and their Influences on Energy Performance of Water Cooled
Chillers,” in Proceeding of the 14th International Conference on QIR (Quality in
Research), 2015, no. June 2018.

[38] C.Y. Chiang, R. Yang, K.H. Yang, The development and full-scale experimental
validation of an optimalwater treatment solution in improving chiller
performances, Sustain. 8 (7) (2016) 1–21, https://doi.org/10.3390/su8070615.

[39] M.A. Bernier, B. Bourret, Pumping energy and variable frequency drives,
ASHRAE J. 41 (12) (1999) 37–40.

[40] J.E. Braun, S.A. Klein, J.W. Mitchell, Effectiveness Models for Cooling Towers
and Cooling Coils, ASHRAE Trans. 95 (2) (1989) 164–174.

[41] L. Wang, P. Haves, F. Buhl, An improved simple chilled water cooling coil
model, SimBuild 2012 IBPSA Conference, 2012.

[42] M.J. Holmes, The simulation of heating and cooling coils for performance analysis,
in: 1st International Conference on System Simulation in Buildings, 1982, pp.
245–282.

[43] , Systems” (1997).
[44] T. B. Jekel, ‘‘Modeling of ice-storage systems,” 1991.
[45] K.H. Drees, Modeling and Control of Area Constrained Ice Storage Systems,

Purdue University, West Lafayette, 1994.
[46] J. E. B. Drees, K H, ‘‘Modeling and Experimental Validation of Area Constrained

Ice Storage Systems,” Int. Refrig. Air Cond. Conf., 1994.
[47] D. S. Christian Weber, Ryan Stroupe, ‘‘Performance of a Thermal Energy

Storage System, 25 Years On,” in Performance of a Thermal Energy Storage
System, 25 Years On, 2015, p. 27.

Further Reading

[30] Daikin, ‘‘AG 31-002 Application Guide Centrifugal Chiller Fundamentals,” no.
February, pp. 1–33, 2015.

https://doi.org/10.1016/j.applthermaleng.2003.12.006
https://doi.org/10.1016/j.applthermaleng.2003.12.006
https://doi.org/10.1109/TASE.2014.2352280
https://doi.org/10.1109/TASE.2014.2352280
https://doi.org/10.1016/j.energy.2019.116771
https://doi.org/10.1016/j.egypro.2019.01.183
https://doi.org/10.1016/j.egypro.2019.01.183
https://doi.org/10.1016/j.enbuild.2012.12.040
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0110
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0110
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0110
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0110
https://doi.org/10.1016/j.apenergy.2019.04.017
https://doi.org/10.1016/j.apenergy.2019.04.017
https://doi.org/10.1142/3904
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0130
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0130
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0135
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0170
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0170
https://doi.org/10.3390/su8070615
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0200
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0200
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0205
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0205
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0210
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0210
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0210
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0215
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0215
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0215
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0215
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0220
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0220
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0230
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0230
http://refhub.elsevier.com/S0378-7788(22)00593-X/h0230

	A novel algorithm for optimal equipment scheduling and dispatch of chilled water systems with ice thermal storage
	1 Introduction
	2 Methodology
	2.1 Components modeling
	2.1.1 Chillers
	2.1.2 Pumps and fans
	2.1.3 Cooling towers
	2.1.4 Cooling & dehumidifying coils
	2.1.5 Ice thermal storage

	2.2 Overall problem formulation
	2.3 Optimization strategy
	2.3.1 Bi-level optimization
	2.3.2 Parameters tuning


	3 Results & discussion
	4 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	Appendix
	References
	Further Reading


